Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
V
verl
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ZhangXiaoyun
verl
Commits
014a39f4
Commit
014a39f4
authored
Apr 16, 2025
by
Yaoyu Zhu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update codev dataset and rl config (use_liger)
parent
31ee9176
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
157 additions
and
16 deletions
+157
-16
examples/data_preprocess/codev.py
+4
-2
recipe/dapo/run_dapo_codev_7b_16k_inaccurate_16kdata_err_l0.2_threshold.sh
+12
-11
recipe/dapo/run_dapo_codev_7b_7.4k_r1_gt.sh
+134
-0
scripts/preprocess.sh
+5
-1
slurm_submit.py
+2
-2
No files found.
examples/data_preprocess/codev.py
View file @
014a39f4
...
...
@@ -91,7 +91,7 @@ if __name__ == '__main__':
parser
.
add_argument
(
'--train_size'
,
type
=
int
,
default
=
15000
)
parser
.
add_argument
(
'--test_size'
,
type
=
int
,
default
=
984
)
parser
.
add_argument
(
'--save_jsonl'
,
action
=
'store_true'
,
help
=
'Save dataset as jsonl files'
)
parser
.
add_argument
(
'--
double_gt'
,
action
=
'store_true'
,
help
=
'View r1 code as well as original ground tru
th as ground truth'
)
parser
.
add_argument
(
'--
gt'
,
type
=
str
,
default
=
[
'gt'
],
choices
=
[
'gt'
,
'r1'
,
'double'
],
help
=
'Choose ground_truth or r1 response or bo
th as ground truth'
)
# continuous_reward is moved to training cfg
# parser.add_argument('--continuous_reward', action='store_true', help='Save dataset as jsonl files')
# parser.add_argument('--template_type', type=str, default='base')
...
...
@@ -144,8 +144,10 @@ if __name__ == '__main__':
question
=
make_question
(
example
[
"question"
])
# if args.continuous_reward:
# ground_truth = {"answer": ground_truth, "reward_mode": "continuous"}
if
args
.
double_gt
:
if
args
.
gt
==
'both'
:
ground_truth
=
{
"answer"
:
ground_truth
,
"r1_answer"
:
extract_verilog
(
example
[
"r1_response"
][
"content"
])}
elif
args
.
gt
==
'r1'
:
ground_truth
=
extract_verilog
(
example
[
"r1_response"
][
"content"
])
# pprint(ground_truth)
# exit(0)
...
...
recipe/dapo/run_dapo_codev_7b_16k_inaccurate_16kdata_err_l0.2_threshold.sh
View file @
014a39f4
...
...
@@ -19,9 +19,8 @@ overlong_penalty_factor=1.0
# An early version for DAPO
enable_filter_groups
=
True
gen_prompt_bsz
=
512
# NOTE: no filtering here
train_prompt_bsz
=
512
train_prompt_mini_bsz
=
32
train_prompt_bsz
=
128
train_prompt_mini_bsz
=
64
n_resp_per_prompt
=
16
use_token_level_loss
=
True
...
...
@@ -46,7 +45,8 @@ actor_ppo_max_token_len=$((max_prompt_length + max_response_length))
infer_ppo_max_token_len
=
$((
max_prompt_length
+
max_response_length
))
offload
=
True
gen_tp
=
4
ppo_max_token_len_per_gpu
=
32768
num_gpu
=
$((
$USER_GPUS_PER_NODE
*
$SLURM_JOB_NUM_NODES
))
...
...
@@ -65,13 +65,14 @@ python3 -m verl.trainer.main_ppo \
algorithm.adv_estimator
=
grpo
\
data.train_files
=
/nfs_global/S/zhuyaoyu/projects/verl/data/codev/v1/err_l0.2_16k_r1_filtered/train.parquet
\
data.val_files
=
/nfs_global/S/zhuyaoyu/projects/verl/data/codev/v1/err_l0.2_16k_r1_filtered/test.parquet
\
data.train_batch_size
=
128
\
data.train_batch_size
=
${
train_prompt_bsz
}
\
data.val_batch_size
=
512
\
data.max_prompt_length
=
2048
\
data.max_response_length
=
16384
\
algorithm.filter_groups.enable
=
${
enable_filter_groups
}
\
algorithm.filter_groups.max_num_gen_batches
=
999
\
algorithm.filter_groups.metric
=
acc
\
data.gen_batch_size
=
$((
(
$train_prompt_bsz
*
4
/
3
+
$num_gpu
-
1
)
/
$num_gpu
*
$num_gpu
))
\
actor_rollout_ref.model.path
=
$MODEL_PATH
\
+actor_rollout_ref.model.override_config.attention_dropout
=
0.
\
+actor_rollout_ref.model.override_config.embd_pdrop
=
0.
\
...
...
@@ -97,7 +98,7 @@ python3 -m verl.trainer.main_ppo \
actor_rollout_ref.rollout.log_prob_max_token_len_per_gpu
=
32768
\
actor_rollout_ref.rollout.tensor_model_parallel_size
=
4
\
actor_rollout_ref.rollout.name
=
vllm
\
actor_rollout_ref.rollout.n
=
16
\
actor_rollout_ref.rollout.n
=
${
n_resp_per_prompt
}
\
actor_rollout_ref.rollout.val_kwargs.n
=
2
\
actor_rollout_ref.rollout.temperature
=
1.0
\
actor_rollout_ref.rollout.val_kwargs.temperature
=
1.0
\
...
...
@@ -110,11 +111,11 @@ python3 -m verl.trainer.main_ppo \
custom_reward_function.overlong_buffer.enable
=
${
enable_overlong_buffer
}
\
custom_reward_function.overlong_buffer.len
=
${
overlong_buffer_len
}
\
custom_reward_function.overlong_buffer.penalty_factor
=
${
overlong_penalty_factor
}
\
custom_reward_function.path
=
verl/utils/reward_score/codev.py
\
custom_reward_function.name
=
compute_score_wrapper
\
custom_reward_function.continuous_reward.enable
=
True
\
custom_reward_function.continuous_reward.err_threshold
=
0.2
\
custom_reward_function.continuous_reward.reward_mapping
=
'threshold'
\
custom_reward_function.
train.
path
=
verl/utils/reward_score/codev.py
\
custom_reward_function.
train.
name
=
compute_score_wrapper
\
custom_reward_function.
train.
continuous_reward.enable
=
True
\
custom_reward_function.
train.
continuous_reward.err_threshold
=
0.2
\
custom_reward_function.
train.
continuous_reward.reward_mapping
=
'threshold'
\
algorithm.kl_ctrl.kl_coef
=
0.0
\
trainer.critic_warmup
=
0
\
trainer.logger
=[
'console'
,
'wandb'
]
\
...
...
recipe/dapo/run_dapo_codev_7b_7.4k_r1_gt.sh
0 → 100644
View file @
014a39f4
#!/bin/bash
set
-x
set
-euxo
pipefail
project_name
=
'DAPO'
exp_name
=
'DAPO-Early-Qwen2.5-32B'
adv_estimator
=
grpo
kl_coef
=
0.0
kl_loss_coef
=
0.0
clip_ratio_low
=
0.2
clip_ratio_high
=
0.28
enable_overlong_buffer
=
True
overlong_buffer_len
=
$((
1024
*
1
))
overlong_penalty_factor
=
1.0
# An early version for DAPO
enable_filter_groups
=
True
train_prompt_bsz
=
128
train_prompt_mini_bsz
=
64
n_resp_per_prompt
=
16
use_token_level_loss
=
True
# Ray
RAY_ADDRESS
=
${
RAY_ADDRESS
:-
"http://localhost:8265"
}
WORKING_DIR
=
${
WORKING_DIR
:-
"
${
PWD
}
"
}
RUNTIME_ENV
=
${
RUNTIME_ENV
:-
"
${
WORKING_DIR
}
/verl/trainer/runtime_env.yaml"
}
NNODES
=
${
NNODES
:-
16
}
# Paths
# Algorithm
## Train
max_prompt_length
=
$((
1024
*
2
))
max_response_length
=
$((
1024
*
20
))
## Validation
val_top_k
=
-1
# 0 for HF rollout, -1 for vLLM rollout
# Performance Related Parameter
sp_size
=
8
use_dynamic_bsz
=
True
actor_ppo_max_token_len
=
$((
max_prompt_length
+
max_response_length
))
infer_ppo_max_token_len
=
$((
max_prompt_length
+
max_response_length
))
offload
=
True
gen_tp
=
4
ppo_max_token_len_per_gpu
=
32768
num_gpu
=
$((
$USER_GPUS_PER_NODE
*
$SLURM_JOB_NUM_NODES
))
export
VLLM_USE_V1
=
1
echo
"
$WANDB_DIR
"
echo
"
$SAVE_DIR
"
echo
"
$WANDB_API_KEY
"
# Set default model path if not provided
MODEL_PATH
=
"/nfs_global/S/lvhanqi/LLaMA-Factory/saves/Qwen2.5-Coder-7B-Instruct-codev-r1-87k/full/sft_6epoch"
# Train over a single node, 8 A100-80GB GPUs.
python3
-m
verl.trainer.main_ppo
\
algorithm.adv_estimator
=
grpo
\
data.train_files
=
/nfs_global/S/zhuyaoyu/projects/verl/data/codev/v1/qwen7b32b_filter_gt_r1_error_rate_e_0.5_7.4k/train.parquet
\
data.val_files
=
/nfs_global/S/zhuyaoyu/projects/verl/data/codev/v1/qwen7b32b_filter_gt_r1_error_rate_e_0.5_7.4k/test.parquet
\
data.train_batch_size
=
${
train_prompt_bsz
}
\
data.val_batch_size
=
512
\
data.max_prompt_length
=
2048
\
data.max_response_length
=
16384
\
algorithm.filter_groups.enable
=
${
enable_filter_groups
}
\
algorithm.filter_groups.max_num_gen_batches
=
999
\
algorithm.filter_groups.metric
=
acc
\
data.gen_batch_size
=
$((
(
$train_prompt_bsz
*
4
/
3
+
$num_gpu
-
1
)
/
$num_gpu
*
$num_gpu
))
\
actor_rollout_ref.model.path
=
$MODEL_PATH
\
+actor_rollout_ref.model.override_config.attention_dropout
=
0.
\
+actor_rollout_ref.model.override_config.embd_pdrop
=
0.
\
+actor_rollout_ref.model.override_config.resid_pdrop
=
0.
\
+actor_rollout_ref.model.use_liger
=
True
\
actor_rollout_ref.model.enable_gradient_checkpointing
=
True
\
actor_rollout_ref.actor.optim.lr
=
1e-6
\
actor_rollout_ref.actor.optim.weight_decay
=
0.0
\
actor_rollout_ref.actor.use_dynamic_bsz
=
True
\
actor_rollout_ref.actor.ppo_max_token_len_per_gpu
=
${
ppo_max_token_len_per_gpu
}
\
actor_rollout_ref.model.use_remove_padding
=
True
\
actor_rollout_ref.actor.clip_ratio_low
=
${
clip_ratio_low
}
\
actor_rollout_ref.actor.clip_ratio_high
=
${
clip_ratio_high
}
\
actor_rollout_ref.actor.ppo_mini_batch_size
=
${
train_prompt_mini_bsz
}
\
actor_rollout_ref.actor.use_kl_loss
=
True
\
actor_rollout_ref.actor.kl_loss_coef
=
0.00
\
actor_rollout_ref.actor.kl_loss_type
=
low_var_kl
\
actor_rollout_ref.actor.entropy_coeff
=
0
\
actor_rollout_ref.actor.grad_clip
=
0.5
\
actor_rollout_ref.actor.use_token_level_loss
=
${
use_token_level_loss
}
\
actor_rollout_ref.model.enable_gradient_checkpointing
=
True
\
actor_rollout_ref.actor.fsdp_config.param_offload
=
False
\
actor_rollout_ref.actor.fsdp_config.optimizer_offload
=
False
\
actor_rollout_ref.rollout.log_prob_max_token_len_per_gpu
=
$((
$ppo_max_token_len_per_gpu
*
2
))
\
actor_rollout_ref.rollout.tensor_model_parallel_size
=
4
\
actor_rollout_ref.rollout.name
=
vllm
\
actor_rollout_ref.rollout.n
=
${
n_resp_per_prompt
}
\
actor_rollout_ref.rollout.val_kwargs.n
=
4
\
actor_rollout_ref.rollout.temperature
=
1.0
\
actor_rollout_ref.rollout.val_kwargs.temperature
=
1.0
\
actor_rollout_ref.rollout.val_kwargs.do_sample
=
True
\
actor_rollout_ref.rollout.gpu_memory_utilization
=
0.8
\
actor_rollout_ref.rollout.enforce_eager
=
False
\
actor_rollout_ref.rollout.free_cache_engine
=
False
\
reward_model.reward_manager
=
prime
\
actor_rollout_ref.ref.fsdp_config.param_offload
=
True
\
custom_reward_function.overlong_buffer.enable
=
${
enable_overlong_buffer
}
\
custom_reward_function.overlong_buffer.len
=
${
overlong_buffer_len
}
\
custom_reward_function.overlong_buffer.penalty_factor
=
${
overlong_penalty_factor
}
\
custom_reward_function.train.path
=
verl/utils/reward_score/codev.py
\
custom_reward_function.train.name
=
compute_score_wrapper
\
custom_reward_function.train.continuous_reward.enable
=
False
\
algorithm.kl_ctrl.kl_coef
=
0.0
\
trainer.critic_warmup
=
0
\
trainer.logger
=[
'console'
,
'wandb'
]
\
trainer.project_name
=
'codev'
\
trainer.experiment_name
=
'codev-7b-7.4kdata-r1-gt'
\
trainer.n_gpus_per_node
=
$USER_GPUS_PER_NODE
\
trainer.nnodes
=
$SLURM_JOB_NUM_NODES
\
+trainer.val_before_train
=
False
\
trainer.default_local_dir
=
$SAVE_DIR
\
trainer.resume_mode
=
auto
\
trainer.default_hdfs_dir
=
null
\
trainer.save_freq
=
20
\
trainer.test_freq
=
20
\
trainer.total_epochs
=
100
"
${
@
:1
}
"
# custom_reward_function.path=/nfs_global/S/zhuyaoyu/projects/dapo/verl/utils/reward_score/codev.py \
\ No newline at end of file
scripts/preprocess.sh
View file @
014a39f4
...
...
@@ -8,4 +8,7 @@
# python examples/data_preprocess/codev.py --data_path /nfs_global/S/lvhanqi/codev_data/sft_model_filter_error_rate_l_0.2_from_87k_and_decontamination_qwen_32b_correct_1234.jsonl --local_dir data/codev/v1/err_l0.2_28k_r1_qwen_filtered --train_size 28161 --test_size 500
# python examples/data_preprocess/codev.py --data_path /nfs_global/S/lvhanqi/codev_data/error_rate_l_0.2_from_87k.jsonl --local_dir data/codev/v1/err_l0.2_20k_r1 --train_size 20067 --test_size 500
# python examples/data_preprocess/codev.py --data_path /nfs_global/S/lvhanqi/codev_data/sft_model_filter_error_rate_l_0.2_from_87k.jsonl --local_dir data/codev/v1/err_l0.2_16k_r1_filtered --train_size 16364 --test_size 300
python examples/data_preprocess/codev.py
--data_path
/nfs_global/S/lvhanqi/codev_data/sft_model_filter_error_rate_l_0.2_from_87k.jsonl
--local_dir
data/codev/v1/err_l0.2_16k_r1_filtered_double_gt
--double_gt
--train_size
16364
--test_size
300
# python examples/data_preprocess/codev.py --data_path /nfs_global/S/lvhanqi/codev_data/sft_model_filter_error_rate_l_0.2_from_87k.jsonl --local_dir data/codev/v1/err_l0.2_16k_r1_filtered_double_gt --gt double --train_size 16364 --test_size 300
# python examples/data_preprocess/codev.py --data_path /nfs_global/S/lvhanqi/codev_data/sft_model_qwen7b32b_filter_gt_r1_error_rate_e_0.5_from_87k.jsonl --local_dir data/codev/v1/qwen7b32b_filter_gt_r1_error_rate_e_0.5_7.4k --gt r1 --train_size 7204 --test_size 200
python examples/data_preprocess/codev.py
--data_path
/nfs_global/S/lvhanqi/codev_data/sft_model_87k_correct1234_filter_qwen7b32b_data.jsonl
--local_dir
data/codev/v1/qwen7b32b_filter_gt_r1_14k
--gt
r1
--train_size
14654
--test_size
300
# python examples/data_preprocess/codev.py --data_path /nfs_global/S/lvhanqi/codev_data/sft_model_87k_correct12345.jsonl --local_dir data/codev/v1/qwen7b32b_filter_gt_r1_14k --gt r1 --train_size 14654 --test_size 3
\ No newline at end of file
slurm_submit.py
View file @
014a39f4
...
...
@@ -116,9 +116,9 @@ if __name__ == "__main__":
parser
=
argparse
.
ArgumentParser
(
description
=
"Submit a Slurm job with specified parameters."
)
# 添加命令行参数
parser
.
add_argument
(
"--node_count"
,
type
=
int
,
default
=
1
,
help
=
"Number of nodes required."
)
parser
.
add_argument
(
"--node_count"
,
type
=
int
,
default
=
2
,
help
=
"Number of nodes required."
)
parser
.
add_argument
(
"--gpus_per_node"
,
type
=
int
,
default
=
8
,
help
=
"Number of GPUs per node (4 or 8)."
)
parser
.
add_argument
(
"--node_type"
,
type
=
str
,
default
=
"r8l40
s
"
,
help
=
"Node type (r8l40/r8l40s/r8a100)."
)
parser
.
add_argument
(
"--node_type"
,
type
=
str
,
default
=
"r8l40"
,
help
=
"Node type (r8l40/r8l40s/r8a100)."
)
parser
.
add_argument
(
"--partition"
,
type
=
str
,
default
=
None
,
help
=
"Partition name. (r8nv-gpu-dedicated needs to be specified)"
)
parser
.
add_argument
(
"--qos"
,
type
=
str
,
default
=
None
,
help
=
"QOS type. (gpu-long needs to be specified)"
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment